Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
playground:indisoft:ethernet [2025/02/13 12:48] 80.187.86.203 [Ethernet Details] |
— (aktuell) | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | ====== Ethernet Evolution ====== | ||
- | |||
- | {{: | ||
- | {{: | ||
- | {{ : | ||
- | {{ : | ||
- | |||
- | Networking Essentials | ||
- | v2.0 | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | Skip to content | ||
- | Communication Principles | ||
- | Ethernet | ||
- | Ethernet | ||
- | |||
- | 5.4.1 | ||
- | The Rise of Ethernet | ||
- | In the early days of networking, each vendor used its own proprietary methods of interconnecting network devices and networking protocols. If you bought equipment from different vendors, there was no guarantee that the equipment would work together. Equipment from one vendor might not communicate with equipment from another. | ||
- | |||
- | As networks became more widespread, standards were developed that defined rules by which network equipment from different vendors operated. Standards are beneficial to networking in many ways: | ||
- | |||
- | Facilitate design | ||
- | Simplify product development | ||
- | Promote competition | ||
- | Provide consistent interconnections | ||
- | Facilitate training | ||
- | Provide more vendor choices for customers | ||
- | There is no official local area networking standard protocol, but over time, one technology, Ethernet, has become more common than the others. Ethernet protocols define how data is formatted and how it is transmitted over the wired network. The Ethernet standards specify protocols that operate at Layer 1 and Layer 2 of the OSI model. Ethernet has become a de facto standard, which means that it is the technology used by almost all wired local area networks, as shown in the figure. | ||
- | |||
- | The figure shows a rectangle that identifies the proprietary vendor protocols from the 1970s as I B M, N C R, Xerox, D E C, and H P. An arrow points to another rectangle to the right that identifies the limited number of standards from the 1980s and 1990s as I E E E 802 dot 3 Ethernet, I E E E 802 dot 4 Arcnet, and I E E E 802 dot 5 Token Ring. An arrow points to another rectangle to the right that identifies the current winning standard as 802 dot 3 Ethernet. | ||
- | |||
- | Proprietary Vendor Protocols | ||
- | (1970s)Limited Number of Standards | ||
- | (1980s and 1990s)IBMAnd the Winner is: | ||
- | |||
- | 5.4.2 | ||
- | Ethernet Evolution | ||
- | The Institute of Electrical and Electronic Engineers, or IEEE (pronounced eye-triple-e), | ||
- | |||
- | Since the creation of Ethernet in 1973, standards have evolved for specifying faster and more flexible versions of the technology. This ability for Ethernet to improve over time is one of the main reasons that it has become so popular. Each version of Ethernet has an associated standard. For example, 802.3 100BASE-T represents the 100 Megabit Ethernet using twisted-pair cable standards. The standard notation translates as: | ||
- | |||
- | 100 is the speed in Mbps | ||
- | BASE stands for baseband transmission | ||
- | T stands for the type of cable, in this case, twisted-pair. | ||
- | Early versions of Ethernet were relatively slow at 10 Mbps. The latest versions of Ethernet operate at 10 Gigabits per second and more. Imagine how much faster these new versions are than the original Ethernet networks. | ||
- | |||
- | Drag the slider bar in the figure across the timeline to see how Ethernet standards have developed over time. | ||
- | |||
- | The animation shows a timeline of 1973, 198, 1983, 1985, 1990, 1993, 1995, 1998, 1999, 2002, 2006, 2009 2015, 2016, present. A table appears below the timeline with 3 rows: year, standard, and description. 1973, Ethernet, Ethernet invented by Dr. Robert Metcalf of Xerox Corp., 1980, D I X standard Ethernet II, Digital Equipment Corp., Intel, and Xerox (D I X) release a standard for 10 Mb/s Ethernet over coaxial cable, 1983 I E E E 802 dot 3 10 base 5, 10 Mb/s Ethernet over thick coaxial cable, 1985, I E E E 802 dot 3a 10 base 2, 10 Mb/s Ethernet over thin coxial cable, 1990 I E E E 802 dot 3i 10 Base t, 10 Mb/s Ethernet over twisted pair (T P), 1993, I E E E 802 dot 3j 10 base f, 10 Mb/s Ethernet over fiber optic, 1995, I E E E 802 dot 3u, 100Base – xx, Fast Ethernet: 100 Mb/s Ethernet over twisted pair (T P) and fiber (various standards), 1998, I E E E 802 dot 3z 1000 base – x, Gigabit Ethernet over fiber optic, 1999 I E E E 802 dot 3ab 100 base – T, Gigabit Ethernet over twisted pair, 2002, I E E E 802 dot 3ae, 10G base – xx, 10 Gb/s over fiber optic, 2006, I E E E 802 dot 3an 10G base T, power over Ethernet enhancements, | ||
- | |||
- | Ethernet Evolution TimelinePresentYearStandardDescription19731980198319851990199319951998199920022006200920152016 to presentEthernetDIX standard | ||
- | Ethernet IIIEEE 802.3 | ||
- | 10 BASE-5IEEE 802.3a | ||
- | 10 BASE-2IEEE 802.3i | ||
- | 10 BASE-TIEEE 802.3j | ||
- | 10 BASE-FIEEE 802.3u | ||
- | 100 BASE-xxIEEE 802.3z | ||
- | 1000 BASE-XIEEE 802.3ab | ||
- | 1000 BASE-TIEEE 802.3ae | ||
- | 10G BASE-xxIEEE 802.3an | ||
- | 10G BASE-T802.3at (PoE)100GbE and 40GbE2.5GBASE-T and 5GBASE-TEthernet invented by Dr. Robert Metcalf of Xerox Corporation.Digital Equipment Corporation, | ||
- | |||
- | 5.4.3 | ||
- | Video - Ethernet Addressing | ||
- | Play Video | ||
- | |||
- | 5.4.4 | ||
- | The Ethernet MAC Address | ||
- | All communication requires a way to identify the source and destination. The source and destination in human communication are represented by names. | ||
- | |||
- | When your name is called, you listen to the message and respond. Other people in the room may hear the message, but they ignore it because it is not addressed to them. | ||
- | |||
- | On Ethernet networks, a similar method exists for identifying source and destination hosts. Each host connected to an Ethernet network is assigned a physical address which serves to identify the host on the network. | ||
- | |||
- | Every Ethernet network interface has a physical address assigned to it when it is manufactured. This address is known as the Media Access Control (MAC) address. The MAC address identifies each source and destination host on the network. | ||
- | |||
- | The animation has a topology consisting of a switch with links to four host PCs labeled, H1, H2, H3 and H4. H1 says I need to send information to H3. A frame appears on the screen of the PC and an expanded view of the frame appears above the PC. The frame consists of the framing addressing and data. The destination address CC: | ||
- | |||
- | This is not addressed to me. I shall ignore it.This is not addressed to me. I shall ignore it.This is mine.I need to send information to H3.Destination AddressSource AddressCC: | ||
- | |||
- | 5.4.5 | ||
- | Lab - Determine the MAC Address of a Host | ||
- | In this lab, you will complete the following objectives: | ||
- | |||
- | Determine the MAC address of a Windows computer on an Ethernet network using the ipconfig /all command. | ||
- | Analyze a MAC address to determine the manufacturer. | ||
- | | ||
- | 5.3 | ||
- | Network Communication Models | ||
- | 5.5 | ||
- | Communication Principles Summary | ||
- | |||
- | |||
- | ====== Kommunikation ====== | ||
- | |||
- | Alle Kommunikationsmethoden haben drei Elemente gemeinsam. Das erste dieser Elemente ist die Nachrichtenquelle oder der Absender. Nachrichtenquellen sind Personen oder elektronische Geräte, die eine Nachricht an andere Personen oder Geräte übermitteln müssen. Das zweite Element der Kommunikation ist das Ziel oder der Empfänger der Nachricht. Das Ziel empfängt die Nachricht und interpretiert sie. Das dritte Element wird als Übertragungsmedium oder Kanal bezeichnet. Es stellt den Pfad bereit, über den die Nachricht von der Quelle zum Ziel gelangen kann. | ||
- | |||
- | Bevor wir anfangen, miteinander zu kommunizieren, | ||
- | |||
- | - ? jeweils ein identifizierter Absender und Empfänger (3.transmission medium, or channel) | ||
- | - ? Kommunikationsmethode (persönlich, | ||
- | - ? Gemeinsame Sprache und Grammatik Geschwindigkeit und Zeitpunkt der Zustellung | ||
- | - ? Bestätigungsstrategie Bestätigungs- oder Empfangsanforderungen Müssen wir bestätigen, | ||
- | |||
- | Warum Protokolle wichtig sind? | ||
- | |||
- | Sowohl in einer kabelgebundenen als auch einer kabellosen Umgebung wird ein lokales Netzwerk als ein Bereich definiert, in dem alle Hosts „dieselbe Sprache sprechen“ müssen, was in der Computersprache bedeutet, dass sie „ein gemeinsames Protokoll verwenden“ müssen. | ||
- | |||
- | {{ : | ||
- | |||
- | Protokollmerkmale | ||
- | * Nachrichtenformat | ||
- | * Nachrichtengröße | ||
- | * Timing | ||
- | * Kodierung | ||
- | * Kapselung | ||
- | * Nachrichtenmuster | ||
- | |||
- | ===== Standards ====== | ||
- | RFCs for internet standards are published and managed by the IETF. | ||
- | ==== Ethernet ==== | ||
- | Es gibt kein offizielles Standardprotokoll für lokale Netzwerke, aber im Laufe der Zeit hat sich eine Technologie, | ||
- | |||
- | There is no official LAN standard protocol, but over time, Ethernet, has become more common than the others. Ethernet protocols define how data is formatted and how it is transmitted over the wired network. The Ethernet standards specify protocols that operate at Layer 1 and Layer 2 of the OSI model. Ethernet standards have evolved for specifying faster and more flexible versions of the technology. Each version of Ethernet has an associated standard. Each host connected to an Ethernet network is assigned a physical address which serves to identify the host on the network. Every Ethernet network interface has a physical address assigned to it when it is manufactured. This address is known as the Media Access Control (MAC) address. The MAC address identifies each source and destination host on the network. | ||
- | ==== Netzwerk Kommunikations Modelle ==== | ||
- | Network Communication Models | ||
- | |||
- | A stack illustrates the protocols as a layered hierarchy, with each higher-level protocol depending on the services of the protocols shown in the lower levels. The separation of functions enables each layer in the stack to operate independently of others. | ||
- | |||
- | protocol models and reference models | ||
- | |||
- | internetwork reference model is the OSI model | ||
- | {{ : | ||
- | |||
- | The OSI model breaks network communications down into multiple processes. Each process is a small part of the larger task. | ||
- | |||
- | The protocols that make up the TCP/IP protocol suite can be described in terms of the OSI reference model. The functions that occur at the internet layer in the TCP/IP model are contained in the network layer of the OSI Model. The transport layer functionality is the same between both models. | ||
- | |||
- | === The OSI model === | ||
- | ~ consists of seven layers: | ||
- | * 7 application | ||
- | * 6 presentation | ||
- | * 5 session | ||
- | * 4 transport ((Die Transportschicht definiert Dienste zur Segmentierung, | ||
- | * 3 network | ||
- | * 2 data link | ||
- | * 1 physical ((Prozess der Kodierung der Datenbits)) | ||
- | |||
- | === TCP/IP Model === | ||
- | * 5 6 7 Application | ||
- | * 4 Transport | ||
- | * 3 Internet | ||
- | * 1 2 Network Access | ||
- | |||
- | ==== Tabelle ==== | ||
- | ^Group^ | ||
- | |Upper Layers| | ||
- | |:::| 6 |Presentation|::: | ||
- | |:::| 5 |Session|::: | ||
- | |Lower Layers| | ||
- | |:::| 3 |Network|IP addressing, Routing| | ||
- | |:::| 2 |Data Link|Network interface cards and drivers, Network switching, | ||
- | |:::| 1 |Physical|Physical medium (copper twisted pair, fiber-optic cables, wireless transmitters, | ||
- | |||
- | ---- | ||
- | ===== Ethernet Details ===== | ||
- | Ethernet-Packet kann in der Regel 1514 Bytes groß werden. | ||
- | Sie schaffen so also 100 Pakete pro Sekunde a 1500 Bytes. 150kByte/ | ||
- | Erst wenn eine gewisse Größe überschritten ist oder keine eingehenden Pakete mehr kommen, sendet der Empfänger dann eine Sammelquittung: | ||
- | |||
- | https:// | ||
- | |||
- | regelmäßigen Paketverlust teilweise ermitteln aber wenn ein Client 15MBit mit 1500byte Pakete überträgt, | ||
- | |||
- | ==== Protokolle ohne IP ==== | ||
- | übermäßige Broadcasting-Anteil des NetBEUI am Gesamtverkehr innerhalb der Netzwerke | ||
- | |||
- | IPX/SPX stands for Internetwork Packet Exchange/ | ||
- | |||
- | IPX ist ein Protokoll auf Netzwerkebene (Schicht 3 des OSI-Modells), | ||
- | |||
- | |||
- | |||